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We study the frequency synchronization of a randomly coupled oscillators. By analyzing the continuum
limit, we obtain a sufficient condition for the mean-field-type synchronization. We especially find that the
critical coupling constantK becomes 0 in the random scale-free network,Pskd~k−g, if 2 ,gø3. Numerical
simulations in finite networks are consistent with this analysis.
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I. INTRODUCTION

Recently, it has become clear that complex networks play
an important role in many natural and artificial systems, such
as neural networks, metabolic systems, power supply sys-
tems, the Internet, and so on[1,2]. In particular, we have
recognized that many networks have scale-free topology; the
distribution of the degree obeys the power lawPskd,k−g.
The study of scale-free networks now attracts the interest of
many researchers in mathematics, physics, engineering, and
biology.

The dynamics in network systems is one of the important
themes of the investigation of complex networks. In this pa-
per, we study the synchronization of a random network of
oscillators. Phase synchronization in complex networks has
been studied by several authors[3,4], while frequency syn-
chronization has not been studied as much. One of the im-
portant studies on this problem was done by Watts[5]. He
suggested, from numerical simulation, that mean-field-type
synchronization occurs in small-world networks such as the
Watts-Strogatz model. His study was followed by the work
of Hong et al., in which phase diagrams and critical expo-
nents are numerically studied in detail[6]. These works
showed that mean-field-type synchronization, which Kura-
moto observed in globally coupled oscillators[7], appears
also in small-world networks. However, such a study in
scale-free networks has not been performed yet.

In this paper, we analytically study frequency synchroni-
zation in a random network of oscillators. By analyzing the
continuum limit of this model, we obtain a sufficient condi-
tion for synchronization. Our result shows that in the scale-
free random network, the threshold for synchronization is
absent if 2,gø3. We also carry out numerical simulations,
and the results are consistent with this analysis.

This paper is constructed as follows. The next section
describes the model of an oscillator network and derives the
continuum limit equation. Section III is devoted to deriving a
sufficient condition for synchronization from the continuum
limit equation. We show that the order parameter is different
from the one used in previous works; in particular, we con-
clude that the threshold for synchronization disappears in the
random scale-free network. These results are consistent with

the results of the numerical simulations, which are described
in Sec. IV. In the final section, we make a summary of this
paper and discuss the relation to the other properties of the
scale-free network.

II. OSCILLATOR NETWORK MODEL AND ITS
CONTINUUM LIMIT

First we describe the model we study in this paper. We
study the network withN nodes. At each node, there exists
an oscillator, and the phase of the oscillatorui is developed
as

] ui

] t
= vi + Ko

j

ai,jsinsu j − uid, s1d

whereK is the coupling constant, andai,j is 1 if the nodesi
and j are connected and 0 otherwise.vi is a random number
whose distribution is given by the functionNsvd.

For the analytic study, it is convenient to use the con-
tinuum limit equation. We definePskd as the distribution of
nodes with degreek, andrsk,v ; t ,ud as the density of oscil-
lators with phaseu at time t, for given v andk. We assume
that rsk,v ; t ,ud is normalized as

E
0

2p

rsk,v;t,uddu = 1. s2d

For simplicity, we assumeNsvd=Ns−vd. Under this assump-
tion, we suppose that the collective oscillation corresponds to
the stable solution,dr /dt=0, in this model.

Now we construct the continuum limit equation for the
network of oscillators. The evolution ofr is determined by
the continuity equation]r /]t=−]srvd /]u, wherev is defined
by the continuum limit of the right-hand side(r.h.s.) of Eq.
(1). Because one randomly selected edge connects to the
node of degreek, frequencyv, and phaseu with the prob-
ability kPskdNsvdrsk,v ; t ,ud /edkkPskd, rsk,v ; t ,ud obeys
the equation*Electronic address: miya@aurora.es.hokudai.ac.jp
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] rsk,v;t,ud
] t

= −
]

] u
Frsk,v;t,udSv +

Kk e dv8 e dk8 e du8Nsv8dPsk8dk8rsk8,v8;t,u8dsinsu − u8d
e dk8Psk8dk8

DG . s3d

In the next section, we study the mean-field solution of this
equation.

III. MEAN-FIELD ANALYSIS OF RANDOM OSCILLATOR
NETWORK

In this section, we study the sufficient condition for the
synchronization using Eq.(3). First we introduce order pa-
rametersr ,cd as

reic =E dvE dkE duNsvd

3Pskdkrsk,v;t,udeiuYE dkPskdk. s4d

This order parameter is different from the one used in previ-
ous work in the small-world model[5,6]. In previous works,
oi eiui /N is used for the mean field, while our order param-
eter corresponds tooi kie

iui /oi ki, whereki is the degree of
the nodei. However, from Eq.(3) it seems natural to use Eq.
(4) as the mean-field value in the random network. Here we
note that 0ø r ø1.

Inserting Eq.(4) into Eq. (3), we get

] rsk,v;t,ud
] t

= −
]

] u
hrsk,v;t,udfv + Kkr sinsc − udgj.

s5d

The time-independent solution ofr is then

]

] u
hrsk,v;t,udfv + Kkr sinsc − udgj = 0. s6d

Without a loss of generality, we can assumec=0. Since we
want to seek the solution which corresponds to Kuramoto’s
solution in globally coupled oscillators, we assume the solu-
tion of this equation as

rsk,v;ud =5dXu − arcsinS v

Kkr
DC if

uvu
Kkr

ø 1

Csk,vd
uv − Kkr sin uu

otherwise,

s7d

whereCsk,vd is the normalization factor. Here we note that
r depends on bothK and k. This equation means thatKk
corresponds to the coupling between mean field and the os-
cillator. Inserting Eq.(7) into Eq.(4), we get the equation for
r,

r =E dvE dkE duNsvdkPskdrsk,v;udeiuYE dkkPskd.

s8d

To calculate this integral, first we divide the integral overv,

E dvE dkE duNsvdkPskdrsk,v;udeiu

=E dkE duSE
−Kkr

Kkr

dv +E
−`

−Kkr

dv +E
Kkr

`

dvD
3 NsvdkPskdrsk,v;udeiu. s9d

The contribution from the integral atv,−Kkr andv.Kkr
is 0 if Nsvd=Ns−vd, because

SE
−`

−Kkr

dv +E
Kkr

`

dvDNsvdrsk,v;udeiu

=E
Kkr

`

NsvdeiuCsk,vdS 1

v − Kkr sin u
+

1

v + Kkr sin u
D .

s10d

The integral of the r.h.s. of Eq.(10) over u is equal to 0.
Therefore, Eq.(9) is equivalent to

r =E dkE
−Kkr

Kkr

NsvdkPskd

3expFi arcsinS v

Kkr
DGY E dkkPskd. s11d

If we assume arcsinsv /Kkrd is betweenf−p /2 ,p /2g, we get

r E dkkPskd =E dkE
−Kkr

Kkr

dvNsvdkPskdÎ1 −S v

Kkr
D2

=E dkE
−1

1

dv8kPskdNsKkrv8dÎ1 − v82Kkr

= Kr E dkk2PskdE
−1

1

dv8NsKkrv8dÎ1 − v82.

s12d

If r Þ0, we get

E dkkPskd = KE dkk2PskdE
−1

1

dv8NsKkrv8dÎ1 − v82.

s13d

The l.h.s. of this equation is independent ofr and we define
the r.h.s. of this equation asfsrd. At r =1, fsrd is not larger
thanedkkPskd, because
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E dkk2PskdE
−1

1

dv8NsKkrdÎ1 − v82

øE dkk2PskdE
−1

1

dv8NsKkrv8d

øE dkk2Pskd
1

Kkr
E

−`

`

dv9Nsv9d

=
e dkkPskd

Kr
. s14d

Here we use the relatione−`
` dvNsvd=1. Therefore, the suf-

ficient condition that Eq.(12) have a solution at 0, r ø1 is
that fsrd.edkkPskd at r =0,

KNs0dp e dkk2Pskd
2 e dkkPskd

. 1. s15d

This is the sufficient condition for synchronization in a ran-
dom network of oscillators. The most impressive point of
this equation is that in the random scale-free network,Pskd
~k−g, this condition is satisfied for anyK.0 if 2,gø3,
becauseedkk2Pskd /edkkPskd diverges. Therefore, we have
no threshold for synchronization in the random scale-free
network. This seems similar to the absence of a threshold in
the susceptible-infected-susceptible(SIS) model[8]. We will
discuss this similarity later.

In this section, we derive a sufficient condition for syn-
chronization in a random network of oscillators, using the

continuum limit equation. In the next section, we show that
the analysis above is in good agreement with the results of
the numerical simulations.

IV. NUMERICAL SIMULATION OF SYNCHRONIZATION

In this section, we show the result of the numerical simu-
lations of the random network of oscillators. In all the simu-
lations, we takeNsvd asNsvd=0.5 if −1.0,v,1.0, and 0
otherwise.

First we show the result on the 1000-node Erdös-Rényi
random network model. We choose the probability of cou-
pling p=0.005, which givesedkkPskd=5.0 andedkk2Pskd
=29.7 on average. In this case, the estimated critical valueK
is Kc=0.214. Each simulation is carried out 100 times.

In Fig. 1, we plot the relation betweenvi anddui /dt after
a long timest=200d whenK=0.15 and 0.30. In the case of
K=0.15,du /dt seems to depend onv linearly. On the other
hand, atK=0.30 many oscillators seem to be synchronized at
du /dt=0. This figure strongly suggests that synchronization
occurs betweenK=0.15 and 0.30.

We plot the relation betweenv andu for K=0.15 andK
=0.30 in Fig. 2. We find a clear difference between these two
cases. In the case ofK=0.30, the distribution ofsvi ,uid is
apparently nonuniform, while atK=0.15 we cannot find any
structure. In the case ofK=0.30,u seems to depend linearly
on v. However, from the previous analysis we suggest thatu
depends on bothv andk. To clarify the degree dependence,
we plot sv ,ud for the nodes with the degreek= 3, 5, and 7 at

FIG. 1. sv ,du /dtd distribution of oscillators in a random net-
work, for K=0.15 andK=0.30.

FIG. 2. sv ,ud distribution of oscillators in a random network;
K=0.15 andK=0.30.
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K=0.30 in Fig. 3. We also plot arcsinsv /Kkrd in these fig-
ures. The average ofr is 0.623 in our simulation. From these
figures, we find that distribution ofsv ,ud seems to be con-
centrated around a single line. The concentration line coin-
cides qualitatively withu=arcsinsv /Kkrd. This result sug-
gests that our mean field defined by Eq.(4) is the correct
one.

To estimate the critical couplingKc, we plot theK depen-
dence of the average of the order parameterrav in Fig. 4. rav
is less than 0.1 and shows a weak dependence onK at
K,0.2. This nonzero value ofrav is due to the finite-size
effect. On the other hand, atK.0.2, rav increases rapidly as
the interaction increases. This figure suggests thatKc is about
0.2, which is in agreement with our analysis. Therefore, we
conclude that all numerical results are consistent with our
analysis.

From these simulations, we find that our mean-field
theory is applicable to the Erdös-Rényi model. However, the

most impressive suggestion of our analysis is the absence of
the threshold in the random scale-free network. In the fol-
lowing, we show the result of simulation in the random
scale-free network withg=2.5. In Fig. 5, we show the rela-
tion between order parameterr and coupling constantK for
N=500, 1000, 2000, and 4000. AtN=500, rav rapidly in-
creases aboveK,0.16, which is qualitatively consistent
with theKc,0.175 estimated from Eq.(12). As the network
size increases,rav at small coupling decreases, which sug-
gests that the finiterav at small coupling is the finite-size
effect. The order parameter begins to increase rapidly above
Kc. We note that by increasing the system size, the increase
of order parameter begins at smaller coupling. This means
that the critical couplingKc decreases as the system size
increases. We also showKc estimated from Eq.(12) in this
figure. The estimatedKc qualitatively coincides with the cou-
pling constant at which the order parameter increases rapidly.
We conclude that our analysis and the results of the numeri-
cal simulation show a good agreement also in the random
scale-free network. These results suggest that in the infinite-
size scale-free network, the critical coupling constantKc be-
comes zero, just the same as in the continuum limit equation.

To compare the results of the numerical simulation and
the analysis more precisely, we need a more accurate estima-
tion of Kc from the numerical simulation. In the case of the
globally coupled networks and Watts-Strogatz model,Kc is

FIG. 3. sv ,ud distribution of oscillators with degree 3, 5, and 7
in a random network;K=0.30.

FIG. 4. Interaction dependence of mean-field parameterrav.

FIG. 5. Interaction dependence of the mean-field parameter in
the random scale-free network forN=500, 1000, 2000, and 4000.
The arrow showsKc estimated from Eq.(12). Simulations for each
parameter are carried out for at least 50 realizations of the networks.
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numerically obtained as the point at whichN0.25rav becomes
independent of the size of the network[6]. In their analysis,
there exists an assumption thatKc does not depend on the
size of the network. On the other hand, our analysis and
simulation show thatKc depends clearly on the size of the
network through the average of the square of the degrees.
Therefore, it is impossible to obtain accurateKc from finite-
size analysis. The exact estimation ofKc is a difficult task.

However, we find thatKc derived from Eq.(12) seems to
have a strong relation to the phase transition. We rescaleK
by Kc, which is obtained from Eq.(12), and plot the relation
betweenN0.25rav and K /Kc in Fig. 6. In the case ofN
=1000, 2000, and 4000, the well-defined crossing point ex-
ists atK /Kc=1. In the case ofN=500,N0.25rav at K /Kc=1 is
a little larger than in the other cases. However, this difference
is small, and it seems thatK /Kc=1.0 is the crossing point at
largeN. This result is similar to the results of the finite-size
scaling in the globally coupled networks and Watts-Strogatz
model. In these models, there exists a crossing point atK
=Kc. On the other hand, our analysis is not a precise deter-
mination of the critical coupling strength. To avoid the size
dependence ofKc, we rescaleK and we have no guarantee
that such a rescaling is valid for the scale-free network
model. However, our result strongly suggests thatKc ob-
tained from the numerical simulation coincides with the re-
sult of the analytic solution.

To conclude this section, we carried out the simulations
on the Erdös-Rényi model and the random scale-free

network. All the results of these simulations show a qualita-
tive agreement with the analysis in the previous section.

V. SUMMARY AND DISCUSSION

In this paper, we study the frequency synchronization of
the random oscillator network. By analyzing the continuum
limit equation, we find that mean-field-type synchronization
occurs in a random network model. We obtain a sufficient
condition for the synchronization. In particular, we find that
the threshold for the synchronization is absent in a scale-free
random network if 2,gø3. The results of numerical simu-
lations are in good agreement with this analysis.

One of the most astonishing results in the dynamics of the
scale-free network is the absence of an epidemic threshold in
the SIS model. Our result seems to be similar to the result in
the SIS model, however there is a large difference between
them. In the SIS model, the absence of an epidemic threshold
is the result of the divergence ofknn, the mean degree of the
nearest-neighbor nodes[9]. On the other hand, in our model
the absence of a threshold originates from the degree depen-
dence of the coupling between the order parameter and the
oscillators. The coupling between the oscillators and the
mean field is proportional to the degree of the nodes, as
shown in Eq.(5), and the contribution to the order parameter
from the oscillator is also proportional to the degree of the
node, shown in Eq.(4). This degree dependence results in
thek2 dependence of Eq.(15), which leads to the absence of
the threshold in a random scale-free network. Therefore,
there is a large difference between the absence of a threshold
in the SIS model and the synchronization, although these are
apparently similar results. To clarify this difference, we will
need to study the synchronization in the other network mod-
els. As Eguíluz and Klemm have shown, a scale-free network
with a large clustering coefficient has an epidemic threshold
in the SIS model[10], due to the smallness ofknn. The dif-
ferent behavior of the threshold may appear in our oscillator
network, because the absence of the threshold is not caused
by the divergence ofknn, but by the degree dependence of
mean-field–oscillator coupling. The study of the synchroni-
zation in other scale-free network models is a future
problem.
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